ASYMPTOTIC ANALYSIS OF STATIONARY DISTRIBUTION
OF THE FRONT OF A TWO-STAGE CONSECUTIVE
EXOTHERMIC REACTION IN A CONDENSED MEDIUM

V.S. Berman and Yu. S, Ryazantsev UDC 536.46

An approximate theory of the stationary distribution of the plane front of a two-stage exo-
thermic consecutive chemical reaction in a condensed medium is developed in the article.
The method of joined asymptotic expansions is used in constructing the solutions. The
ratio of the sum of the activation energies of the reactions to the final adiabatic combus-
tion temperature is a parameter of the expansion. The characteristic limiting states of

the stationary distribution of the wave corresponding to different values of the parameters
figuring in the problem are shown, Approximate analytical expressions for the wave veloc-
ity and distribution of concentrations are obtained for each of the states,

1. Formulation of the Problem. The stationary distribution of the plane front of a two-stage consecu-~
tive exothermal reaction A; - A, — A, in a condensed medium can be described by the following system of
equations and boundary conditions:

d a7 T

wry (7"'%‘) —me ‘Z—x + Q181D (T) + Qaa2pD, (T) =0 (1.1
m ilaxl = — a,0®, (7) (12)
m-32 — 4,0, (T) — 2,0, (T) (1.3)

K —
@y (1) = kyexp—pz-, Dy (T) = kyexp ot (1.4)
z=—o0, a =1, T=T., a =0 (1.5)
x = oo, a, = ay =0, I'=T,=T_+c'(+Q) . (1.6)

Here x is the coordinate, a, and a, are the mass fractions of the substances A, and 4,, T is the tem-
perature, p is the density, m is the mass combustion rate, c is the heat capacity, A is the thermal con-
ductivity, R is the gas constant, @ and @, are the thermal effects of the reactions, k; and k, are pre-expo-
nential multipliers, andE; and E, are the activation energies.

It is assumed that in the course of the chemical reactions the density and all the thermophysical
characteristics of the medium maintain constant values and that the rates of the chemical reactions depend
on the temperature according to the Arrhenius law,

The problem (1.1)-(1.6) is a two-point boundary problem whose solution consists of the definite func-
tions a,(x), a,(x), and T(x) and the proper value m of the problem,

For the existence of a solution it is assumed that the function &, is different from zero and is deter-
mined by Eq. (1 .4) everywhere except for the small temperature interval T_= T < T, , where it is reduced
to zero [1, 2].
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The problem (1.1)-(1.6) has the initial integral

AdT/dz = me (T — T,) + m (Qy + Q) a, + mQaas . (1.7

Equation (1.7) will be used in place of Eq. (1.1). I the temperature
is taken as an independent variable, the problem (1.2)-(1.7) can be repre-
sented in the form

a,, L0 dr 5. (1—r) Bsg (1 —71)
: o = T—ogr — (A —5g)q exp [_ BSE—‘_G+T ] {1.8)
dg = U—s)(r—q { B(i—sE)U—r)]
b = ey ey P | T B —on) — (1.9)
Fig.1 T =0, r=20, g=20 (1.10)
=1, r=1, ¢=1 (1.11)

kl op = E]
btk TET E T
Q1 Ei 4 Ep . T—T_ T m2c
= = = 6= — = R
0= Grro B T, 7 ' YTt

RT, ° T, —T_°
Here r(7) and q(7) are the functions sought and u is a proper value of the problem,

r=1—a;, g=1—a,—ay, 6=

2. Some Properties of the Integral Curves, In the space 7, r, q the integral curves (1.8)-(1.11} of
the problem must pass through the points (7 ¢, 0, 0) and (1, 1, 1), 0 < T¢ < 1. From the conditions of non-
negativity of the concentration and successiveness of the conversion r = q = 0 of the reagents, and the con-
dition of nonnegativity of the temperature gradient (heat flux) 7 — oQr— (1 - UQ)q =0, as well as from the
boundary conditions,it can be concluded that the region where the integral curves have physical meaning
is bounded by the five planes (see Fig. 1)

q207 r=4gq, 7217 7':1,
T—ogr— (1 —ag)g=0.

The point (T¢, 0, 0), corresponding to the cold boundary of the combustion wave, is an ordinary point,
while the point (1, 1, 1}, corresponding to the hot boundary of the combustion zone, is singular. The follow-
ing three integral curves pass through it:

(Z; )f(\%)lzo (2.1)

(%)2 =0, <_dz—>z ! —1 Sg + w :116§Q) e PR (2.2)
3 |

(5), = (1 S )1 - o] (2.3)

The first of these curves could not be a solution of the problem for any values of the parameters since
this curve does not fall within the region of admissible values of 7, r, and q (Fig. 1). The other two curves
can represent a solution. It is seen from (2.3) that for large g one of the derivatives must be negative if
oE < % Such a curve cannot be a solution since the functions r and g must be increasing. For o < 1/1 the
solution of the problem is represented by the curve (2.2).

Let us note one more property of the equations (1.8), (1.11). The straight line 7 — oQr—@1- U'Q)q =0
on the r = 1 plane between the points (o QL 0) and (1, 1, 1) consists of the singular points of Eq. (1.8).
Each of these is a saddle point through which two separatrices pass in the plane g = const which have the
tangents

7odr \D dr \2) S, —Bosg(l +9) 1
dv > =0, <—F) = ule exp ——G;’T— g 2.4

3. Preliminary Analysis of Equations. Description of Particular Cases, Approximate solutions of
the problem (1.8)-(1.11), corresponding to different values of the parameter o, will be constructed in
parts 4-7 by the method of joined asymptotic expansions [3]. These particular cases are developed in a
successive analysis of different assumptions concerning the possible asymptotic behavior of the proper
value ;¢ and the functions r and g for large g . Before going on to the construction of the solutions, let us
note the line of reasoning uniquely leading to the various important particular cases studied further.
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It follows from the form of Eqs. (1.8), (1.9) that for large values of 8 the region in which the prin-
cipal variation in the functions r and g occurs can occupy a small fraction of the interval 0 = 7 = 1, The
right sides of Egs. (1.8) and (1.9) contain small exponential multipliers which must be compensated for at
large values of g in order for the functions r and q to grow from 0 to 1 in the interval 0 < 7 = 1. In order
to compensate for these multipliers,it is necessary to assume that the quantity 4 contains the multiplier
exp (—B a), so that compensation of the exponential terms in Egs. (1.8) and (1.9) will occur at the points 7 =
74° and T,°:

©° = o log (1 + o) — g, W =all—0g)(1+0)—0 - (3.1)

The choice of the constant « determines the position of the points 7,° and Tf and the asymptotic be-
havior of the functions r(7) and q(7).

Leto0= 7,°=1, 7,° < 0. For such a choice of & the exponential multiplier is compensated for only
in the expression for the derivative dr/dr, while in the expression for dq/d7 an increasing exponent ap-
pears. For 7 < 7,° the derivative dr/d7 and the function r(7) are exponentially small, The small neigh-
borhood of the point 7 = 7,° is the region of the principal variation in the function r(r) from zero to one.
The compensation for the growing exponential multiplier in the expression for dq /dT can be provided for
by the corresponding behavior of the difference r — q which must be exponentially small, so that the region
of the principal variation of g from 0 to 1 will coincide with the corresponding region of variation of r, ie.,
it will be represented by the small neighborhood of the point 7 = 7,°. It then follows from the condition
T-oQT —(1- GQ)q > 0 that this is possible if 7,° =1, From (3.1) we find that ¢ = ¢, Having divided
(1.9) by(1,8), we obtain

dg _ r—gq _pa-zop) —~BU—2s5(1—7)
T T T=r¢ Fexp s+% ’ - (3.2)
It is seen from Eq. (3.2) that the region of the principal variation of q can coincide with the region of
the principal variation of r only when oy > 1/2 and must be located in the small neighborhood of 7 = 1. The
case o = % will differ somewhat from the case Y < o = 1. Although the regions of the principal varia-
tion of r and g will coincide here and be located near 7 =1, the difference r — q will still not be exponential-
ly small,

The integral curves (1.8)~(1.11) of the problem for % < o =< 1 with large g are characterized by
the same asymptotic behavior. At the singular point (1, 1, 1) they correspond to the values of the deriva-
tives determined by Eq. (2.3). The behavior of these curves which pass close to the straight lines r = 0,
g=0andr=q, r =1 is shown in Fig. 1 (curve 1),

Now suppose the points 7 = 7,° and 7 = 7,° lie within the interval 0 = 7 = 1. In this case, as before,
the principal variation of r will occur in the neighborhood of 7 = 7,°; for 7> 7,° the derivative dr/dr
again becomes small, since in this case the growth of the exponential multiplier in the expression for dr /d7
is expressed even more sharply than the decrease in (1 —r), The principal variation of q from 0 to 1 will
oceur near T = T,°, with the exponential multiplier in the expression for the derivative dq/d7 reducing to
unity, It follows from the condition r > q that 7,° < 7,°, while from the condition 7 — ocQr—(1—oglg>1
it follows that 74° > oQs T,° = 1. Taking (3.1) into account, we find

a=1—o0p (g+o)(1+op+20)t<Tor<<y .

In this case the integral curves emerging from the point (T¢, 0, 0) travel along the line r =0, g = 0,
then staying near the surface g = 0,they move to the line r =1, q = 0, and after turning near the point
(1, 1, 0) move in the vicinity of the line r = 7 =1 to the singular point (1, 1, 1) (curve 2 in Fig. 1), The
derivatives of the integral curves at the singular point are determined by Eq. (2.2), from which it can be
found that in the case under consideration (dg/d7),— <.

For 0 < oR < (oQ + o)1+ oQ+ 20)~1 the integral curves (1.8)-(1.11) of the problem with large B
also possess general characteristics. In this case one must choose a=0og(1 + oc)oQ + o)~!., Here T =
TQ and 7,° > 0; the exponential multiplier exp (—@g) compensates only for the small exponential multi-
plier in the expression for dr/d7 while the "equalization” of orders of magnitude in the left and right sides
of Eq. (1.9) is provided for by the corresponding exponential behavior of the denominator in the right side
of (1.9). The growth of r from 0 to 1 occurs in the small neighborhood of the point 7 = oQ- The increase
of ¢ from 0 to 1 occurs "uniformly"” over the entire section o= 7 = 1. The behavior of the integral
curve is shown in Fig. 1 (curve 3). At the singular point (1, 1, 1) the integral curves have the derivatives
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{2.2). One can ascertain that in contrast to curve 2 the derivative dg/dT has a finite value at the singular
point in this case,

It can be concluded from the qualitative analysis conducted that the asymptotic behavior of the inte-
gral curves of the problem differ considerably with variation in the value of o in the following intervals:

1, < o5 <1, og =, (0g +0) (1 +0g +20) <o <<,
0<<or<(sq +0) (1 +0q 4 20)".

This conclusion is confirmed by the actual construction of four different solutions, Knowledge of the
asymptotic solutions of the simpler problem presented in [4] proves to be useful in choosing the form of the
asymptotic expansion,

4, Solution for % < o = 1. Two regions having different asymptotic behavior of the solutions must
be distinguished in this case: the small neighborhood of the point 7 =1 (inner region) and the remaining

part of the interval (outer region). In the inner region in place of 7 we introduce the variable 7* =g (1 —7),
and we will seek a solution in each of the regions in the form of inner and outer expansions

) =f@)ro(™) +HB) )+ ..., @ =Fo@)ro(®) + F1 @ ri(v) +...
(filfo—0, F1/Fy—0, B— o0) (4.1)

g (v%) = 1y B) g0 (v*) + 1 B) 41 (%) +..., ¢ {7) = Ny (B) g0 (7) + N1 B) 21 (7) +...
(m/ne—0, Ni/Nyg—0, B—oco)+ 4.2)

In the two regions we seek an expansion for the proper value p in the form

b=, B o+ By +.-, @/ —>0 as B->oo. (4.3)

The outer expansion must satisfy the boundary conditions (1.10) ,and the inner expansion must satisfy
the conditions (1.11), The correspondence between the expansions in the outer and inner regions is estab-
lished from the condition of joining, which consists in the requirement of the identical limiting behavior of
the inner and outer expansions written in identical variables [3, 4]. We will confine ourselves to the deter-
mination of two terms of the expansions (4.1)-(4.3).

After converting to the variable 7 * and substituting the expansions (4.1)-(4.3) into (1.8), (1.9), and
(1.11) with the accuracy being approximately equal to the higher-order terms in smallness, we obtain

drg S (4 —ro) [ cEr* ]
— Bolo o = 7 sgo— A =39 a exp|— Bog — 115 (4.4)
dge _ (—5) (o4 firi— go— mqn) (1 —op)t* 4.5
— BPolo 7 = T—oqn— 0 —ogs eXP[—BU—GE)—l—H] (4.5)
™0, =1, =1. (4.6)

The equality ny(8) = f,(8) =1, which follows from (4.6), is used in Eqgs. (4.4) and (4.5).

It is seen from (4.4) that to equalize the orders of smallness of the left and right sides in (4.4) one
must choose

@ (B) =~ exp (— for) - (4.7)
In this case Eq. (4.5) can be satisfied if one takes
Ty = 4o fi =na, " =4q . (4.8)

This means that the difference between the functions rg, q, and ry, q; is exponentially small:

G — (25 — 1) ¥

rot-firs = o = mgy~ =— e T P exp —— (4.9)
Taking (4.7) and (4.8) into account, we now find from (4.4) and (4,6) that
6, (1 +0) — GT*
ro(r*)zi—h—wg—[l—exp _ﬁ_] . (4.10)
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Keeping (4.7) in mind one can confirm that the solutions r(7) and (1) of Egs. (1.8) and (1.9) are ex-
ponentially small in the outer region. Therefore, in the outer expansions (4.1) and (4.2)

To() =¢(®) = (1) =q (x) =0.
The condition of joining then leads to the requirement that

ro(t*) =0, ¢ (t*)—0, r(*) =0, q(*)—>0 ast™* > . (4.11)

Applying (4.11) to(4.10) ,we find

o, (1-+0a)
Sg

#*
—GET

, o To{t¥) =exp Trs

o = (4.12)

Let us proceed to the determination of the second approximation, After converting to the variable 7 *
and substituting the two-term expansions (4.1)-(4.3) into (1.8) and (1.9) with allowance for (4.9), retaining
in the equations terms of a higher order of smallness than during the determination of ry, q;, and |, we »
obtain for ry(T *) the equation

d d 1 Gir*z £ GoT*
BMlCPld—Tri + BuoPofs 7;-1*— = 0y 'E"{“(,l:_—s);‘ — —1—170—] exp (* Bor — “1—‘?}“?) . (4.13)

It becomes possible to determine the function ry(7*), satisfying the boundary condition and the joining
condition, from (4.13) if

L) =87 @ (B) =Bt (B) = B2 exp (— Bog) . (4.14)
The equation and the boundary condition for r; take the form
dri ST o l-h —ogT*
Bo go = Gk[ Tror  T—rnm _110_} eXp 5 (4.15)

* —
T =r1__0‘

Here p, and r (7 *) are determined by Eqs. (4.12). From (4,15) we find

Mg —5pt* 2 (1 4 ©) (GEf*)__Z_[ ST sgit*t — Ggt*
rl(r*)_W[l*eXPﬁ]+ R 4 146 Sy 1+1+c+ A+ | *P T (4.16)

3
J () = S(e" — 1) adz, J(o0) = |

Applying the joining condition (4.11) to(4.16),we find

1 ' 2
p= 2 g g 2] (4.17)

2
S

Thus, the two-term inner and outer expansions of the functions r(7) and q(7) and the expansion of the
proper value 4 , which represent an approximate solution of the problem (1.8)-(1.11) in the particular case
under consideration, have the form

P =g @) =1, )+ %), 1@ =@ =0, (4.18)
p=p" (g +pw) exp (— Bor) _

Here ry, ry, {4, and uy are determined by the equations (4.12), (4.16), and (4.17). Let us write the two-
term expansion for the mass rate of propagation of combustion in dimensional variables:

[T o () o v oo 19

It is seen that in the particular case under consideration the combustion rate depends only on the kinetic
parameters k; and E, of the initial reaction.

Comparing (4.19) with the equation obtained in [4] for the rate of propagation of a single-stage exo-
thermal reaction in the condensed phase shows that the start of the second reaction occurs only at a value
of the combustion temperature which is determined by the total heat release of the two reactions.

5. Solution for o = 1/2 . The system of equations (1.8), (1.9) can be reduced to a single equation,
After substituting o =% and dividing (1.9) by (1.8), we obtain
dag _ (—5) r—gqg

dr ER {—r

(5.1



With the help of (5.1) we can express q through r:

(1 =87 (L —8r — (1 — )%, 8, =, (L —ap), ==z
Pk (= =), 5=,

Making use of (5.2), the problem (1,8)~(1.11) reduces to the solution of the single equation with the
conditions

q(r) :{ (5.2)

dr 5 (1—r) 3 Bd—m

_ 5 B ] 3
R R (=AY eXp[ P 2(-54,—1)] (5.3)
1 =0, T =0 (5.4)

T =1, r—1. (5.5)

Here the function q(r) is given by Eq. (52).

In constructing the approximate solution of the problem (5.3)-(5.5) we distinguish inner and cuter re-
gions of variation in the variable 7 as in part 4; in the neighborhood of 7 =1 we introduce the variable
7* = (1 — 7) and we will seek a function r and a proper value u in the form of the expansions (4.1)-(4.3).
For the null approximation we obtain from (5.3) and (5.5)

d 5, (1 —ra) *
— poBPo o5 = . i ] ro(0)=1.. (5.6)

p_ =
T ogre—(—ogi (e ¥ [‘ ERE T

Here, as in part 4, f,(8) = 1. The dependence q,(ry) is established from (5.2). To compensate for the
small exponential term in the right side of Eq. (5.6) ,we set

@0 (B) = p* exp (— f/2) . (5.7
Using (5.7) and {(5.2),0ne can find from (5.6) that
Bo(t — 7o) {1+ (1 —39) [ —In(1 —rg)}} = (1 4 ) [ 1 ~ exp =] (5.8)
(6, =1
— 1— —Gpt*’
‘—‘?T‘Lé—:’) [GQ Y S:Q (- ro)%*} = 25,(1 + 5) [1 — exp— f: J (5.9)
(5, %= 1fa)

Applying the condition of joining, which as in part 4 is expressed through the requirement that
ry(T*)—~0as 7* — o to (5.8) and (5.9), we obtain

Ho =

(t—5)5,0+9) kol } E \ o —E
(f—o,50)5p OZ[&nQe+ﬁz(Q1+Qz) () e 2RT, (510

Equations (5.8)-(5.10) determine the null approximation for the function and the proper value u for
the problem. The following terms of the expansions, which provide a correction on the order of g1, cannot
be obtained in analytical form, and their determination comes down to the numerical integration of a simple
ordinary first-order differential equation:

dryf T2 L +5Qr1 +nd— o) S, [ro—qo(r)] (1 —ro)t ‘ r
TJT*=‘{2(1+G)Z - T—sgre— (1 —5g) 4o (ro) T, T
i) % . —ro) — T =0 . 5.11
ot T =sgn - d— g atal <P T g O=0 (5-11)

We note that the expression (5.10) for u; coincides with (4.12) with o; << 1. This result reflects the
fact that with the equality of the activation energies of the two reactions the relative magnitude of the pre-
exponiential multipliers becomes the determining factor in the comparison of the chemical reaction rates.
For ky > k; the difference r — q is small, and in contrast to part 4 it becomes insignificant.

6. Solution for (7 + 0)(1 + 0+ 20)~! < o < ¥. In this case the division of the interval
0= 7 =1 into inner and outer regions will be different for Eqs. (1.8) and (1.9). For Eq. (1.9) the inner re-
gion will be the small neighborhood of 7 = 7,° = 1, the outer region will be the remaining part of the inter-
val. For Eq. (1.8) the inner region will be the small neighborhood of some point T = T4 <1,and the outer
region will consist of two segments of the interval 0 =7 =1 separating the small neighborhood of the point
74° from the points 7 = 0 and T =1, The construction of the solution comes down to the search for the outer
and inner expansions for each of the two partitionings of the interval,
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Let us study the region adjacent to 7 = 7,° =1. In place of the variable 7 in (1.8)-(1.11) we introduce
To* = (1 — 7). We will seek an approximate solution in the inner region in the form of the two-term ex-
pansions

b= 9 (B) ko + 01 (B) ma, T (1% = fy (B) 7o (2*) + fy ( B) 1y (5,%)
g (%*) = 1o () 2o (0*) + M (B) &1 (1% (6.1)
@/, — 0, folfo— 0, ny/ng — 0 as B — oo

From the boundary conditions (1.11) we find

fo®) =ny () =1 . (6.2)
In the particular case under consideration one must choose
9o (B) = B~ exp [—(1 — Gx) B, @1 (B) = BP0 (B),

ng(B) =1, n, (B) =B .
After substituting (6.1) into Eq. (1.8) and taking (6.2) and (6.3) into account, one can obtain

(6.3)

1 —r(n* ~ exp (200 —1)B .
It is seen that the function r(7,*) as g8 — « differs from unity only in a small exponential term, so that
ry (%) =1, rn(n*)=0.

The equation and boundary conditions for the function q,(7,*) have the form

dg 4 —o0,) — (i —og)T*
o dr,;k = (1__52) exp T+s v 0)=1. (6.4)
From (6.4) we find
t—s)(l+0) — (1 —op T
g (1,¥) =1— TN Y ) [1 —exp— ] (6.5)

The constant p; in (6.5) must be determined from the condition of joining (6.5) with the solution g(7)
in the outer region, which is equal to zero with the accuracy of the exponential terms. Therefore, the con-
dition of joining is expressed by the requirement that

go (12*) = 0, g (1*) >0 as 1%, — oo . (6.6)

Applying (6.6) to (6.5), we obtain

» (t —sg) (1 —op) — (1 —op) 12*

”OZW_&)—’ Gy (T2*) = exp —1Fs (6.7)

After substituting 7,* = p(1 — 7) into (6.1), having retained terms with a higher order of smallness,
taking (6.2)-(6.4) into account,one can obtain from (1.9) an equation for g;:

— (1 —sp) Ta*

dgg (=5 {Ml , U—cpw™ T }
0TI T U—og ke UFoP T —spl—a s 170 (6.8)
The solution of Eq. (6.8) satisfying the condition ¢,(0) = 0 has the form
w(—s5,) (1 — o) —( —op) To*
I L £ A
A +q) (1 —op) ©* 2 [ 2 2Ta* (t —opg) Ta* — (1 —op) Ta*
“'(1_%)(1_%)*’{ 7o ]+ p— [1_GE+1+5+ A Top ]EXP TTs ° (6.9)
Here the function J is determined as in (4.17).
From the condition (6.6) we find
=)l 49 T 4o a2 .
= T —og) (I —og)? [(1———GQ) S ] (6.10)

Equations (6.7), (6.9), and (6.10) give approximate expressions for the proper value u of the function
q. However, it is necessary to determine an approximate expression for the function r(7) in agreement
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with all the assumptions introduced during the determination of i and q in order for these equations to be
considered as an approximate solution of the problem (1.8)-(1.11). It was assumed in particular that in the
neighborhood of T =1 the function r(7) is equal to unity with the precision of the small exponential terms.
Keeping in mind the explicit form of ¢, one can conclude from Eq. (1.8) that the region of significant varia-
tion in r is the small neighborhood of the point 7 = 7y° =op (1 + 0)(1 — (TE)“1 — ¢, In this region we intro-
duce the variable 7% = g(74° — T) in place of T, and we will seek solutions in the form of the inner expan-
sions

r(u®) =0 @) ro (¥ + 7D @) (1)
g (t)* = ne (B) g0 (11*) + Y (B) 41 (1,¥) -

The point 7 = 7,° is an inner point of the interval, so that the boundary conditions which the functions
(6.11) must satisfy represent the conditions of joining the inner expansions (6,11) with the solutions of Eqgs.
(1.8) and (1.9) in the outer regions. One can confirm the fact that in the outer regions as g —~ the func-
tion q(7) is exponentially close to zero, while the function r(7) is exponentially close to unity (7 > 7,°) and
zero (T < T4°), so that the conditions of joining take the form

(6.11)

rp (u*)—>0, r (% >0, ¢ (1,)>0, ¢ (@©*—>0 as 1*>o0 (6.12)

ro (0% — 1,1 (1,%) =0, ¢, (%) - 0, ¢ (1) -0 as 7,* - —o0. (6.13)

Having substituted (6.11) into Egs. (1.8) and (1.9) written in the variable 7 ;* , after estimating the -
magnitudes with allowance for the explicit form of u, one can find that

g (0*) =q1 (*) =0, [ (P) =1, A (B) =p. (6.14)
In this case the equation for ry(7*) can be written in the form

(1—_GE) (1 _GQ) dro 1—rp ox —3g (1 +5) Ti* . (6.15)

T, A—sy(lF0) duF T — Sg70 (T + )2

From (6.15) and (6.12) we find the implicit expression for ry(7,*):

o 5 (1 —o,) (t:° + o) —ag (1 +9)T*
(o — ) In(L — ro) +ogry = T =091 —op) %5 exp C (6.16)
The function r (7*) determined by Eq. (6.16) satisfies the joining condition (6.13) only if
w >0 Or o5 >> (60 + 0) (I +0q + 207, (6.17)

The inequality (6.17) gives the lower limit for the region of values of o for which the structure of
the wave of the two-stage conversion is described by the solution constructed in this section, i.e., consists
of two isolated zones in each of which one of the two successive reactions primarily takes place.

We note that in this case the determination of the function r;(7,*) comes down to the solution of an
ordinary first-order differential equation not having an analytical solution, and it can be solved through
simple numerical integration.

7. Solution for 0 < o < (o + o)1+ o+ 20)~1. An examination of different variants of the
asymptotic behavior of the solution of the problem (1.8)-(1.11) in this range of variation of o leads to the
conclusion that the region of the principal variation of r from 0 to 1, as in part 6, turns out to be the small
neighborhood of an inner point 7 = 7,° outside which the function r differs from 0 and 1 by small exponen-
tial terms (for 7 < 7,° and T > 7,°, respectively). Now, however, the location of the point 74° does not de-
pend on op and is determined by the equality 7,° = Q.

- The behavior of the function g will differ considerably from that in part 6. For 7 < ¢ the function g
differs from zero by small exponential terms [for 7> o the behavior of ¢ is described by the linear func-
tion (T — O‘Q) 1- UQ)‘1 with an accuracy of the small exponential terms].

Let us examine the solution of Eqs. (1.8) and (1.9) in the neighborhood of the point 7 = 7,° = oQ. We
introduce the variable 7% = B{o @ — 7) and construct the solutions in the form of the expansions

() = (B) ro (*) + AD (B) ri (u*)

g (t11*) = n® (B)gy (1,*) + ny™ (B) ¢y (%) (7.1)
Bo= @ By + @1 By,
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Before writing the equations for the terms of minimum order, we turn our attention to the following
circumstance. It follows from the assumption that the principal change of r from 0 to 1 is concentrated
near 7 = o that fo(i)(ﬁ)=1 in (7.1). In the neighborhood of the point 7 = ¢ where r ~ 1 the expansion of
the function q(74*) cannot begin with a term on the order of unity, since otherwise the condition 7 = ogr +
1- ch)q will be violated. Consequently, if no(i)(ﬁ) =1, then q;(74*) = 0. One other circumstance is con-
nected with the fact that the point (oq, 1, 0) is a singular point of Eq. (1.8) (see part 2). The solution of
Eq. (1.8) near the point 7 = 0@, where it is assumed the function q(7) is smaller than the function r(7) by
an order of magnitude, must be close to the separatrices, one of which is described by the equations r = 1,
q=0.

It is seen from Eq, (1.8) that if the function (1) is considerably smaller than the function r(7) in the
neighborhood of 7,° = 0Q so that one can set g(7) = 0, then in the conversion to the variable 7,* = B(O'Q - T)
the nature of the solution changes greatly since the solution r(7) =1 is lost. Therefore, in seeking a func-
tion r(74*) as a solution in the region 7 > 0 one must take

ro (1,*) =1, r (u*) =0, T* <0 . (7.2)

Considering these remarks, for 7y* < 0 we arrive at the following equation for the function ry (7, *):

dro

5 Bog(1+0) g (1 4-9)1e*
— a0 (B g5 = -oxp [~ o — o | (7.3)
It is seen that it is necessary to take
- —op(1+09)B
Po(B) =B 19XP——GZ2“+T' . (7.4)

Taking (7.4) into account, we obtain a solution for Eq. (7.3), satisfying the condition of joining with the
solution in the outer region [r (T;*)— 0, T¢* — ] in the form

5 (sg+or oxp —E d+om*
T hoq oA AT (@ T

ro(Ts¥) (7.5)
The constant g in (7.5) is determined from the requirement of continuity of the function ry(7,*) at the
point T = 6Q; we have

s, (o9 + o)

—6p (1 +o)u*
Mo = -E-Q—————-GE T —_— (7.6)

ra (1% = oxp —E

After substituting (7.1) into (1.9) and considering the results obtained above, it can be established that
the equation for g (74*) takes on the form

dgs 1 —6,) (o — n{Vg1) og 4 +o)mr*
g n_ p |8 — E
Wolty” g * o (A —ro) —Bl* — (1 — 5) n(ll)ql q (og + o) y
— (1 —255) 4 -+ 0)
8, — ( = ic <0, (7.7)

In the determination of the function q(T,*) it is necessary to consider that the function ry(7*) has
different forms in the regions 7> o and 7 < 0 q. Then it can be seen from (7.7) that for 7 < ogq, when
the function ry(7*) is determined from (7.6}, one must set qi(7*) = 0 or else choose ni(1 (8) in the form
of an exponential function, and not a power function of g1,

In the region of 7 > 0Q, where ry(7,*) = 1, the function q;(7,*) satisfying the condition g;(0) = 0 can
be found if one sets ni(i)(ﬁ) =g, We obtain
¢ (0*) = —(1 —oQytu* 40 (exp d,) . (7.8)
The solutions found must be joined with solutions in the neighborhood of the hot boundary 7 = 1.

We introduce the variable 7* = g(1 — 7) into (1.8) and (1.9) in place of 7, andwe will seek the func-
tions r(7*) and q(7 *) in the form of the expansions

r(t*) =fo B 1o (*F) 411 (B) 11 (vF)
q (v*) =ny (B) 9o (¢*) +ny (B) ¢ (v%). (7.9)
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By analyzing possible variants of the asymptotic behavior of the functions r and q with (7.4) and the
boundary condition (1.11) taken into account,it can be concluded that in the expansion (7.9) one must set
ng(8) =1, f,(8) =1. In addition, ry(7*) =1, r;(7*) =0, since the difference between r(7 *) and unity can
be expressed only by components with a much higher order of smallness than the power of g~

The equation for q(7*) can be satisfied by setting n(8) =3 ~1, Then

1 * G (1 40,5+ 20)
ge®) =1— - 11% —{—0<exp {—Eﬁ-_—i]g) . (7.10)

The function (7.10) satisfies the boundary condition at the hot boundary. Converting from the variable
T* to 7% in (7.10) ,we can confirm that the two-term solution (7.10) joins with the one-term solution (7.8).

The equations obtained exhaust the construction of the approximate asymptotic solution of the problem
which makes it possible to determine the zeroth term in the expansion of the proper value.

Changing to the dimensional variable in (7.6) ,we can write the explicit zeroth approximation of the ex-
pression for the mass velocity of the wave of exothermal conversion. In the limiting case under considera-
tion,

RT® 7 _E

() __ —1
B o P R TP=T_+c'0r. (7.11)

m? = hpky ——

It is seen that the combustion rate depends on the kinetic characteristics and the adiabatic tempera-
ture of the first stage. In this case the zeroth approximation (7.11) coincides with the equation for the
propagation rate of a single-stage reaction with the kinetic characteristics ky and E, and combustion tem-
perature T} () obtajned by the method of Zel'dovich and Frank-Kamenetskii [1].

The next term in the expansion of the proper value i can also be determined. For this it is sufficient
to consider the equation for ry(7,*) near 7 = 0Q with 7 < 0 Q. One can obtain

ar p, S d+o)u® T —sp(l +o)m* _ 712
o Gee =5 [Po G+ ogP _GQ(i—rg)]eX BRI ri(0) =0, (7.12)

Integrating (7.12) we find

o (%) WSgsg (1+9) [1 ex —op L+ u* } 26+ g

= - Gk(c+5Q)2 [CERENE o (1_’_‘6)__.
sp+om®  omx | 205+ 5 (G+5gf  rogp 49t (7.13
_[ (64 5ol R GE(1+G)]—5E5Q(1+6)' { 5 Fogr ]' -13)

From the joining condition ry — 0, 7;* — = we obtain

S, (45 1 2
b= e e v T (719
8. Discussion of Results. The analytical equations established in parts 4-7 make it possible to clas-
sify the combustion processes according to the given physicochemical characteristics of the condensed sys-
tem, to approximately calculate the propagation rate of the combustion front, and to study the concentration
and temperature profiles. In view of the absence of an exact numerical solution of the problem under con-
sideration let us compare the resulis obtained with the data of [5] in which detailed numerical calculations
were made of the propagation of a combustion wave in a gas, determined by the occurrence of atwo -stage
consecutive exothermic reaction,

Despite the difference between the propagation of a flame in gas and the combustion of a gasless con-
densed system, it is not difficult to observe the analogy between the processes distinguished in [5] thr ough
an analysis of the results of a numerical calculation and the different asymptotic solutions constructed in
the present work.

Having used the apt terminology introduced in [6], the process corresponding to the solution of part 4
must be called convergence, the process of part 6 control, and the process of part 7 separation. It is natur-
al to call the process studied in part 5 incomplete convergence. In the convergence process E; > Ey,and the
combustion rate is primarily determined by the kinetics of the first of the reactions and the adiabatic tem-
perature of complete conversion. In the control process E, > Ey, E /T M < x o/ T4, and the combustion
rate is primarily determined by the kinetics of the second reaction and the adiabatic temperature of com-
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plete conversion, while in the separation process E, > E;, E;/ T_,(_i) > EQ/T+, the combustion rate is deter-
mined by the characteristics and adiabatic temperature of the first stage, and the second reaction proceeds
by an induction process,
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